This page intentionally left BLANK
Table of Contents

Company Overview
Background ... 1
Services ... 2
Organization ... 3
Management Team ... 3
Customers .. 4
 Department of Defense ... 4
 Department of Homeland Security ... 4
 Department of Transportation .. 4
 Department of Health & Human Services .. 4
 U.S. Department of Agriculture .. 4
Customers .. 5
 Commercial Aviation ... 5
 Non-USDOT Transportation Study Customers ... 5

Defense Technical Services Division ... 6
 Engineering & Scientific Services
 U.S. Army Research Laboratory .. 8
 Engineering Support Services
 JITC — Test and Evaluation Mission Support Service ... 9
 Engineering Services
 Navy Sea Systems Command SeaPort Enhanced .. 10
 Information Technology Services
 U.S. General Services Administration ... 11
 Motor Vehicle Maintenance Services
 U.S. Army Aberdeen Proving Ground ... 12
 Logistic Support Services
 Heavy Fleet Maintenance and Repairs .. 13
 Logistic Support Services
 Enhanced Army Global Logistics Enterprise (EAGLE) Program 14

Diversified Services Division ... 15
 Air Traffic Control & Maintenance Services
 National Guard Bureau (Air Force) ... 16
 Air Traffic Control and Weather Observation Services
 Cape Cod Coast Guard Air Station .. 17
 Air Traffic Control Services

Table of Contents continued on next page
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mojave Air & Space Port</td>
<td>18</td>
</tr>
<tr>
<td>Air Traffic Control Services</td>
<td></td>
</tr>
<tr>
<td>Springfield-Beckley Municipal Airport</td>
<td>19</td>
</tr>
<tr>
<td>Air Traffic Control Training</td>
<td></td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>20</td>
</tr>
<tr>
<td>Ramp Tower Control and Gate Management</td>
<td></td>
</tr>
<tr>
<td>Detroit Metropolitan Wayne County Airport</td>
<td>21</td>
</tr>
<tr>
<td>Ramp Control Tower Services</td>
<td></td>
</tr>
<tr>
<td>Seattle-Tacoma International Airport</td>
<td>22</td>
</tr>
<tr>
<td>Research, Science & Technology Division</td>
<td>23</td>
</tr>
<tr>
<td>Crash Investigation & Analysis Services</td>
<td></td>
</tr>
<tr>
<td>NHTSA—Special Crash Investigations</td>
<td>24</td>
</tr>
<tr>
<td>Crash Investigation Services</td>
<td></td>
</tr>
<tr>
<td>Strategic Highway Research Program (SHRP 2)</td>
<td>25</td>
</tr>
<tr>
<td>Field Data Collection Support for the Motorcycle Crash Causation Study</td>
<td></td>
</tr>
<tr>
<td>Federal Highway Administration—Turner-Fairbank Highway Research Center</td>
<td>26</td>
</tr>
<tr>
<td>NASS Survey Modernization Analysis</td>
<td></td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
<td>27</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>28</td>
</tr>
</tbody>
</table>
Dynamic Science, Inc. (DSI) is a wholly-owned subsidiary of Exodyne, Inc., an Arizona corporation headquartered in Phoenix. Exodyne is debt-free, has 331 employees, and generates annual sales of more than $38 million. The company maintains many project offices throughout the United States.

DSI is a customer-focused, high-tech services company providing a broad spectrum of engineering and technical services. We deliver services through three operating divisions to the Department of Defense (DoD), the Department of Agriculture, the Department of Transportation, the Department of Energy, the General Services Administration, the National Institute of Occupational Safety and Health, the National Institute of Health, various universities and hospitals, and private-sector clients.

DSI has more than 119 full-time, technically-proficient employees and the financial resources to successfully provide and manage a wide variety of technical services for government and commercial clients. The dedicated employees at DSI have the experiences and abilities to manage single service functions on up to technically complex, multi-site contracts.

DSI was originally established in 1942 to assist in a crash injury research project at the Cornell University Medical College. Throughout 1985, the organization was devoted to the collection of aviation crash data through direct participation in accident investigations and through accident investigating agencies participating in the Aviation Crash Injury Research Program.

Beginning in 1959, DSI began long-range programs to determine the kinetics and kinematics of the aircraft crash environment for the United States Army, later expanding the program to include full-scale crash tests to determine effects on aircraft structure, systems, and equipment.

During the 1970s and 1980s, DSI played a major role in the U.S. National Highway Traffic Safety Administration’s objectives of saving lives, preventing injuries, and reducing vehicle-related crashes. While operating and managing a 156-acre automotive test center, DSI performed car-to-car, tractor trailer, and barrier crash testing. Through side impact and multi-vehicle crash testing, DSI shaped the worldwide industry for passive restraint system development (air bags).

Throughout the 1980s, DSI began providing air traffic control operations, aircraft maintenance, aircraft fuel handling, and state-of-the-art rocket and missile testing for the United States Army, ballistics research for the Army Research Laboratory, and expanded its capabilities related to automotive safety investigation and research.
DSI’s mission of quality, unsurpassed service has continued throughout the 1990s to the present.

- The U.S. Air Force has recognized DSI’s quality of service with awards for helicopter maintenance, Precision Measurement Equipment Laboratory (PMEL) operations, weather observation and forecasting, and Air Traffic Control and Landing System (ATCALS) maintenance.
- The Air National Guard chose DSI to provide air traffic control and Navigational Aid (NAVAID) maintenance services at seven locations throughout the United States.

DSI has also expanded into train, bus, and motorcycle crash and safety investigations.

Services

DSI has a diverse history of providing technical services to both government and industry. The following list provides a sample of the types of services DSI offers:

- Aviation
- Human Factors Engineering
- Information Technology
- Range Support/Base Operations
- Research and Development
- Scientific and Engineering
- Test and Evaluation
- Vehicle and aircraft operations and maintenance
DSI has many offices strategically placed throughout the United States, and all are staffed with technically-proficient employees who possess a broad array of expertise.

The company’s diverse resource pool includes engineers, air traffic controllers, scientists, technicians, operations and maintenance personnel, as well as specialized employees who are all focused on the customers’ needs.

All of DSI’s specialists are backed by a professional corporate support staff. These positions include finance and accounting, human resources support, contract management, technical publications, and security operations.

DSI maintains a flat organizational structure with an open management style. Leadership on all levels is focused on providing and delivering the best possible services to its customers.

DSI’s president leads the organization, and is selected because of past successful years of demonstrated military and industry leadership and management experience. The president is responsible for all operations, including business development and strategic direction for the company. In addition, DSI’s president has specialized experience in air traffic control, facility operations, facilities management, airspace design, airfield and base operations, and community air traffic planning.

DSI’s contract manager has many responsibilities, including serving as the facility security officer. The contract manager also serves as the customer liaison for all matters detailed in the contract, including pricing, service deadlines, and customer satisfaction. DSI’s contract manager has over 30 years of experience in business and contract fulfillment, and accounting best-practices related to the aviation and transportation industries.
Customers

DSI serves a wide range of customers in both government and private industry. Thanks to DSI’s history of unparalleled service, many clients within the government have been loyal customers for decades.

DSI has been supporting the Army Research Laboratory for over 30 years, and has been providing transportation research to the Department of Transportation (DOT) for over 50 years. Below and on the next page are many of the customers DSI has served over the years.

Department of Defense
- Nation Guard Bureau
- U.S. Air Force
- U.S. Army
- U.S. Navy

Department of Homeland Security
- U.S. Coast Guard

Department of Transportation
- Federal Aviation Administration (FAA)
- Federal Highway Administration
- Federal Motor Carrier Safety Administration (FMCSA)
- Federal Railroad Administration
- John A. Volpe National Transportation Systems Center (Volpe Center)
- National Highway Traffic Safety Administration (NHTSA)
- Research and Innovative Technology Administration (RITA)

Department of Health & Human Services
- Appalachian Laboratory for Occupational Safety & Health (ALOSH)
- Centers for Disease Control & Prevention

U.S. Department of Agriculture
- Food and Nutrition Service

Department of Defense
- National Institute for Occupational Safety & Health (NIOSH)
- National Institutes of Health
- U.S. Public Health Service
Customers

Commercial Aviation

- California Commercial Spaceport, Inc.
- Detroit Metropolitan Wayne County International Airport, MI
- Lea County Municipal Airport, NM
- Mojave Air and Space Port, CA
- Springfield-Beckley Municipal Airport, OH

Non-USDOT Transportation Study Customers

- American Trucking Association
- Arizona Department of Transportation
- Children’s Hospital of Philadelphia, PA
- Children’s National Medical Center (Washington, DC)
- Commercial Automobile Manufacturers
- MCO Transport (Wilmington, NC)
- National Study Center for Trauma & Emergency Medical Systems, University of Maryland School of Medicine
- Oklahoma State University
- San Diego County EMS (San Diego, CA)
- State Farm Insurance
- The Johns Hopkins University Applied Physics Laboratory (APL)
- Truck Manufacturers Association
- University of Maryland Medical Systems (Baltimore, MD)
- University of Medicine & Dentistry of New Jersey
- Weld County Department of Transportation (Weld County, CO)
Defense Technical Services Division

<table>
<thead>
<tr>
<th>Information Technology Services</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td>Army Research Laboratory</td>
</tr>
<tr>
<td>• Computer-Aided Design and Drafting</td>
<td>• Ballistics Simulation Lab</td>
</tr>
<tr>
<td>• Data acquisition and reduction</td>
<td>• Indoor Firing Range</td>
</tr>
<tr>
<td>• Data encoding</td>
<td>• Weapons Materials Research Directorate</td>
</tr>
<tr>
<td>• Database design</td>
<td></td>
</tr>
<tr>
<td>• Database implementation</td>
<td></td>
</tr>
<tr>
<td>• Modeling and Simulation</td>
<td></td>
</tr>
<tr>
<td>• National Accident Safety Survey (NASS)</td>
<td></td>
</tr>
<tr>
<td>• Software scripting</td>
<td></td>
</tr>
<tr>
<td>• Systems integration</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range Support/Base Operations</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td>Army Research Laboratory</td>
</tr>
<tr>
<td>• Instrumentation development</td>
<td>• Aberdeen Proving Ground</td>
</tr>
<tr>
<td>• Maintenance and repair of electrical, mechanical, and structural systems</td>
<td>• Army Redstone Arsenal</td>
</tr>
<tr>
<td>• Missile launch services</td>
<td>• Army Research Laboratory</td>
</tr>
<tr>
<td>• On-site infrastructure/facility management</td>
<td>• Army Yuma Proving Ground</td>
</tr>
<tr>
<td>• Precision Measurement Equipment Laboratory (PMEL)</td>
<td>• Electronic Proving Ground</td>
</tr>
<tr>
<td>• Range and ballistic laboratory support</td>
<td>• Vandenberg AFB</td>
</tr>
<tr>
<td>• Supply, transportation and logistics services</td>
<td></td>
</tr>
<tr>
<td>• Telemetry support</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Maintenance</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services</td>
<td>U.S. Army</td>
</tr>
<tr>
<td>• Motor pool maintenance</td>
<td>• Charles E. Kelley Support Facility (Pennsylvania)</td>
</tr>
<tr>
<td>• Transportation systems operation and maintenance</td>
<td>• Robert Morris Acquisition Center (Maryland)</td>
</tr>
</tbody>
</table>

DSI Capabilities Statement

Page 6
Research and Development

Services
- Armor technology research
- Boiler combustion/emission research
- Electromagnetic armor research
- Electromagnetic gun research
- Experimental facilities
- Materials research
- Robotics
- Supersonic aircraft ullage combustion research

Customers
- Army Research Laboratory
- Army Tank Automation Command
- National Science Foundation
- Federal Aviation Administration

Scientific and Engineering Services

Services
- Aircraft crash-worthy fuel systems
- Ballistic gelatin experimentation
- Ballistics evaluations
- Explosive formulations
- Incapacitation assessments
- Occupant survival systems
- Personnel armor assessments
- Warhead design and analysis

Customers
- Aberdeen Test Center
- Army Fort Eustis Laboratories
- Army Research Laboratory
- Federal Bureau of Investigation
- Naval Weapons Support Center
- Soldier Systems Center at NATICK
- U.S. Secret Service

Test and Evaluation

Services
- Advanced munitions testing
- Automotive and weapons testing
- Full-scale aircraft crash testing
- Full-scale penetrator testing
- Survivability/Lethality experimentation
- Test planning and reporting
- Vehicle performance support

Customers
- Aberdeen Test Center
- Army Fort Eustis
- Army Redstone Arsenal
- Army Research Laboratory
- U.S. Coast Guard
- Vandenberg AFB
The Army Research Laboratory (ARL) has the mission to “provide innovative science, technology, and analyses to enable full-spectrum operations.” Simply stated, this means that ARL, as the Army’s corporate laboratory, must provide to its customers and partners the underpinnings necessary for development and fielding of the capabilities that soldiers require for mission execution.

The diversity and complexity of the organizations and requirements relevant to ARL’s research and analysis programs (near, mid, and far term) present unique management and scientific challenges. ARL’s endeavors must be aligned with the Army Vision; the Army Plan; Program Objective Memoranda guidance; Defense Planning Guidance; Department of the Army approved Defense and Army Science Board results; future capability requirements developed by TRADOC; and technology needs of the RDECs, NSC, ECBC, STRICOM, and the acquisition executives (PEOs/PMs) to whom ARL transitions technologies. Since its inception, ARL has continued development of innovations relevant to planning and evaluation processes applicable to complex research and analysis organizations, and has implemented a comprehensive business planning process specifically tuned to our unique environment.

Description of Services

DSI provides technical support for research at experimental facilities located at Aberdeen Proving Ground and other sites where researchers from the Army Research Laboratory are conducting experiments. The primary objective for this contract is to provide engineering support for various programs conducted by the Army Research Laboratory, which includes experimental facility preparation, work scheduling, hardware fabrication, installation, set up and test execution, equipment repair, inventory control, maintenance of test specimens, and support equipment maintenance. Also included are instrumentation development and use; sample preparation and mechanical testing; preparation and maintenance of databases and reports on the experiments conducted by the ARL.

All work on this program is conducted within the realms of the Research, Development, Test and Evaluation (RDT&E) Operations. The diversity of this contract is such that all major disciplines of engineering, namely, mechanical, electrical, chemical, and civil, are utilized.
This Defense Information Systems Agency (DISA) Test & Evaluation (T&E) Mission Support Service (MSS) provides test and evaluation support, which includes the DISA T&E Management Center (TEMC) and the DISA Joint Interoperability Test Command (JITC), in order to fulfill their DISA T&E missions.

TEMC and JITC are elements of DISA within the Department of Defense (DoD). TEMC and JITC support the DISA Major Range and Test Facility Base (MRTFB) activities. TEMC provides T&E oversight and guidance to DISA acquisition programs to ensure consistent application of sound T&E methodologies and processes. TEMC has highly skilled and motivated computer scientists, electrical engineers, operations research analysts, information technology (IT) specialists, and management analysts who establish, review, and enforce T&E strategies, policies, and procedures for DISA acquisition programs. They represent DISA, as well as champion DISA T&E strategies, within the Office of the Secretary of Defense (OSD) T&E community. TEMC establishes information sharing processes for DISA T&E professionals and provides a professional state-of-the-art facility to support further development and testing of DISA capabilities.

Dynamic Science, Inc., will support tasks to perform a wide range of non-personal services to encompass testing, scientific, engineering, logistic, administrative, and ancillary support of the DISA T&E mission. These services will include all support aspects, including the operation and maintenance of the test tools, labs, networks and infrastructure, and administrative support cells. The Contractor will be required to have familiarity and knowledge of all aspects of the technical and operational characteristics of selected Command, Control, Communication, Computer and Intelligence (C4I), Automated Information Systems (AIS), Information Technology/National Security Systems (IT/NSS), tactical, strategic, and other equipment/systems, and joint and combined architectures and standards used by DoD and Government.
In 2002, the Chief of Naval Operations (CNO) promulgated Seapower 21. It provides a framework to align, organize, and integrate the U.S. Navy to meet the wide variety of challenges that lie ahead. The CNO called upon the entire Navy, including Naval Sea Systems Command (NAVSEA) and the Warfare Centers (WCs), to find ways to become more efficient and effective. To meet Seapower 21 objectives and to increase efficiency, the Naval Surface Warfare Center (NSWC) and the Naval Undersea Warfare Center (NUWC) have aligned to provide seamless integrated support for twelve core Product Area Directorates.

SeaPort Enhanced (SeaPort-e) made electronic procurement of Engineering, Technical and Programmatic support services at NAVSEA a reality. The Navy Virtual SYSCOM (VS) Commanders (NAVAIR, NAVSEA, NAVSUP and SPAWAR) have decided to leverage the successes and efficiencies of the SeaPort-e business model by designating SeaPort-e the vehicle of choice for future Engineering, Financial, and Program Management contractor support services. This decision emphasizes the Navy Virtual SYSCOM’s focus on implementing cost-effective and integrated business practices to better support the Navy.

Overview

Description of Services

Under this contract, DSI provided the following support services:

- Research and Development (R&D)
- System and Process Engineering
- Modeling, Simulation, Stimulation and Analysis
- Prototyping, Pre-production, Model-making, and Fabrication
- System Design Documentation and Technical Data
- Human Factors, Performance, and Usability Engineering
- System Safety Engineering
- Configuration Management
- Quality Assurance
- Interoperability, Test and Evaluation, Trials
- Measurement Facilities, Range, and Instrumentation
- Acquisition Logistics
- Supply and Provisioning
- Training
- Program Management
- Administrative
- Public Affairs and Multimedia
Overview

The General Services Administration (GSA) Small Business Government-Wide Acquisition Contract (GWAC) Center seeks long term, integrated, Information Technology (IT) solutions on a global basis.

The Alliant Small Business (SB) GWAC is a Multiple Award, Indefinite Delivery, Indefinite Quantity contract to provide information technology solutions through performance of a broad range of services which may include the integration of various technologies critical to the services being acquired. The IT services and IT services-based solutions offerings are aligned with the Federal Enterprise Architecture (FEA) and the Department of Defense Enterprise Architecture (DoD EA). The embedded support for FEA and DoD EA practices will facilitate compliance with federal policy mandates for IT investments. The range of IT services and IT services-based solutions includes existing, new, and emerging technologies.

Description of Services

Task orders placed against GWACs may be customized to meet the full range of IT service solutions. Under this contract, DSI can provide the following support services:

- Systems integration, operation, and management
- Software engineering management
- Communications
- Information systems engineering
- Information systems security service
- Network/management telecommunications; and
- Web enabled solutions

Under these tasks, DSI can staff your project with the following specialized, qualified, and experienced personnel:

- Software Developers
- Web Developers
- Systems Analysts
- Help Desk
- Systems Engineers
- Technical Support
- Systems Administrators
- LAN/WAN/SAN Administrators
- Wireless Communications
- Database Administrators (DBA’s)
The Robert E. Morris Acquisition Center at Aberdeen Proving Ground contracted with Engineering/Documentation Systems, Inc. (EDSI) to provide necessary personnel, management, transportation, and material for the maintenance and repair of transient and assigned government-owned and leased vehicles and equipment at the U.S. Army Aberdeen Proving Ground and at U.S. Army Garrison Aberdeen Proving Ground. EDSI, in turn, subcontracted a portion of this effort to DSI.

DSI Services Provided:
- Scheduled maintenance/services
- Unscheduled maintenance/services
- Technical/miscellaneous services
- Parts and supply requisition
- Contract data requirements and reports
- Vehicle/equipment cleaning facilities
- Waste disposal
- Housecleaning

Contract Info:
- DSI H33742-09-C-0034
- CPFF
- DSI is subcontracted to EDSI

Period of Performance:
- November 1989 to April 1995 (one contract; DSI was prime)
- May 2009 to October 2014 (three contracts: DSI is subcontracted to EDSI)

Overview

Description of Services

DSI is responsible for retaining an on-site Project Manager and Supervisory, Maintenance, Administrative, Quality Control, and Safety personnel, for recruiting, training, supervising, and retaining these personnel for performing various vehicle/equipment scheduled and unscheduled maintenance; and for maintaining and cleaning all work areas that are operational at least 40 hours per week.

DSI is responsible for developing and implementing a quality control plan for the work it performs under this contract. This plan incorporates an inspection system, means to avoid personal and/or organizational conflicts of interest, material and equipment accountability, and performance evaluation meetings.

The EDSI/DSI team maintains a safety and health program for all employees on the contract. The EDSI/DSI safety plan incorporates provisions for record maintenance, safety training and orientation, and hazardous materials handling. DSI personnel maintain and service the following equipment for this contract:

- Mobile equipment
- Materials handling equipment
- Support equipment, including portable and stationary emergency generators
- Fire trucks and other emergency equipment
- Special-designed/purpose equipment vehicles
- Heavy construction equipment
- Tactical and military vehicles
- Watercraft (limited)
Logistic Support Services
Heavy Fleet Maintenance and Repairs
Aberdeen Proving Ground, Maryland

Overview

The Aberdeen Test Center (ATC) is a multi-purpose test center with diverse test capabilities and facilities. The unique combination of ATC’s experienced personnel, state-of-the-art facilities, instrumentation, equipment, automotive courses, firing ranges, and industrial fabrication/repair capabilities provide a comprehensive facility available for testing a wide variety of military items, both domestic and foreign, as well as commercial items. Testing is conducted on full systems, as well as system components and includes such items as: combat and general purpose vehicles, automotive technologies, weapons and munitions, general support equipment, individual equipment, generators, night vision devices, bridges, sensors, communication systems, and robotics. ATC also conducts vulnerability/survivability tests, flammability testing, and crash worthiness testing. ATC conducts and/or supports tests at other locations throughout the world with extensive mobile instrumentation.

Description of Services

DSI provides scheduled preventive maintenance, unscheduled repairs, recovery operations, repair/replace unserviceable parts, assemblies, subassemblies and components, refinish, fabricate and/or make modifications to parts; repair accessories, auxiliary equipment, and perform minor body and structural repair, inspections, quality assurance, parts, tires, batteries, and petroleum product disposal, and other services on support vehicles and equipment. DSI services a density list of more than 1350 items, including tracked vehicles, tactical military vehicles, special purpose vehicles and equipment, generators, heavy construction equipment, dozers, loaders, excavators, cranes up to 300T, and watercraft.

This effort is in support of the existing and the future mission of ATC located in and around Aberdeen Proving Ground (APG) north and south (Edgewood Area), to include off-site locations in Carroll Island and Churchville, Maryland.
As the Army Materiel Command’s executive agent for field support, the Army Sustainment Command (ASC) provides support for all aspects of the Army’s multifaceted logistics requirements, including supply, maintenance, and transportation efforts. The ASC supports the Army anywhere it goes, both within the continental United States (CONUS—Contiguous U.S.) and beyond (OCONUS—“outside” the CONUS area).

The ASC’s logistical support efforts directly are key to the success of units’ missions as the ASC coordinates the acquisition, logistics, and technology necessary for deployment, sustainment, redeployment, reset, rebuild, and strategic planning for current and future operations. The 21st century’s state of persistent conflict demands synchronization of materiel acquisition, logistics, and technology support on a grander scale than ever before. In response to these ongoing and complicated requirements, ASC has created a contracting vehicle under which it can requisition the resources and expertise necessary to fulfill its mission: EAGLE (Enhanced Army Global Logistics Enterprise).

The EAGLE program procures maintenance, supply, and transportation services in support of Army directorates of logistics, prepositioned stocks, theater-provided equipment, in-theater maintenance, left-behind equipment, pre-deployment training equipment, new equipment training, new equipment fielding, and RESET. CONUS and OCONUS customers may include the U.S. Army itself, Coalition partners, joint bases, foreign governments, and other Department of Defense agencies. These customers may requisition functional and programmatic services in both conflict environments and locations under no threat at all.

DSI will perform non-personal services in a variety of operational categories in support of any and all Army missions and affiliated customers, including field and sustainment maintenance, retail and wholesale supply, and commercial, local, and personal property transportation. Specifically, DSI offers its expertise in maintenance of motor vehicles, heavy equipment, tactical vehicles, military utility vehicles, materials handling equipment, fire response vehicles, and watercraft.
Diversified Services Division

Aviation Services

Services

Air Traffic Services
• Air traffic controller training and testing
• Control/Separate/Sequence air traffic in terminal area
• Inter- and intra-facility communications/coordination
• Crash/Rescue notification and coordination
• Traffic Advisories
• Automatic Terminal Information Services (ATIS)

Aviation Weather Services
• National Weather Service Certified
• Station Aviation Weather Reporting
• En route Weather Advisories/Warnings

Flight Data Input/Output (FDIO)
• Input/Updates/Termination

Maintenance
• Navigational Aid (NAVAID)
• Meteorological/Navigation (METNAV)
• HF, UHF, VHF Radios
• Air Traffic Control and Landing Systems (ATCALS)

Ramp Tower Control & Gate Management
• Gate ingress and egress
• Commercial air carrier gate scheduling and assignment

Flight Following
• Search and Rescue coordination

Customers

National Guard Bureau – Air Force
• Ellington Airport, TX
• Gabreski Airport, NY
• Martinsburg Airport, WV
• Quonset State Airport, RI
• Rickenbacker International Airport, OH
• Stanly County Airport, NC
• Burlington International Airport, VT
• Alpena County Regional Airport, MI

National Guard Bureau – Army
• Camp Guernsey, WY

Department of Homeland Security
• Cape Cod Air Station, MA

FAA Air Route Traffic Control Centers (ARTCC)
• Boston ARTCC
• Cleveland ARTCC
• Indianapolis ARTCC
• Minneapolis ARTCC
• New York ARTCC
• Washington ARTCC

Detroit Metropolitan Wayne County Int. Airport, MI
Seattle-Tacoma Int. Airport, WA
Mojave Air and Space Port, CA
Springfield-Beckley Municipal Airport, OH

Aircraft Maintenance

Services

Aircraft Maintenance
• UH-1/H and UH-1/N model aviation unit and intermediate maintenance

Customers, Past and Present

U.S. Air Force, Space Command (SPACECOM)
• Malmstrom AFB, MT
• Minot AFB, ND
• Yokota Air Base, Japan

U.S. Army
• 20th Support Command, APG

• F.E. Warren AFB, WY
• Vandenberg AFB, CA
Air Traffic Control & Maintenance Services
National Guard Bureau (Air Force)
Washington, DC (Multiple Locations)

Overview

The Air National Guard is one of seven Reserve components of the United States Armed Forces that augments the Active components in the performance of their missions.

Administered by the National Guard Bureau (NGB), a joint bureau of the departments of the Army and Air Force, the Air National Guard has both a federal and state mission, which results in each Guard member having a dual status – first as a member in the National Guard of his/her state as well as in the National Guard of the United States.

The Air National Guard’s Federal mission is to maintain well-trained, well-equipped units available for prompt mobilization during war and provide assistance during national emergencies (such as natural disasters or civil disturbances). During peacetime, the combat-ready units/support units are assigned to most Air Force major commands to carry out missions compatible with training, mobilization readiness, and contingency operations such as Operation JOINT ENDEAVOR GUARD in Bosnia, Operation PROVIDE COMFORT in Iraq and Turkey, Operation SOUTHERN WATCH in Kuwait, and Operation ALLIED FORCE (Kosovo). Since September 11, 2001, the Air National Guard has been at the forefront of the War on Terrorism, providing support for both the homeland and overseas as part of Operations ENDURING FREEDOM and NOBLE EAGLE.

Description of Services

DSI provides air traffic control and/or maintenance support services at eight different locations:

• Ellington Airport, Texas
• Gabreski Airport, New York
• Martinsburg Airport, West Virginia
• Quonset State Airport, Rhode Island
• Rickenbacker Airport, Ohio
• Alpena Combat Readiness Training Center (CRTC), Michigan
• Stanly County Airport, North Carolina
• Burlington International Airport, VT

Services include recruiting; training, supervising, and retaining all air traffic control, maintenance, management, and administrative personnel, as well as weather observers. DSI maintains Air Traffic Control and Landing System (ATCALCS), meteorological navigation (METNAV), and communications equipment, tools, and materials to fulfill this contract.

NGB – Washington, DC

DSI Services Provided:
- Air traffic control
- Aviation weather observation system
- Flight following
- Flight Data Input/Output (FDIO)
- Maintenance of METNAV; HF, UHF, VHF radios; ATCALCS

Contract Info:
- W9133L-15-C-0048
- Firm Fixed Price
- DSI is prime

Period of Performance:
- 1995 to September 2019 (five contracts)
Overview

The Massachusetts Military Reservation (MMR), jointly operated by the Mass Air National Guard, Army National Guard, and U.S. Coast Guard, is located on the upper western portion of Cape Cod, Massachusetts. It includes parts of the towns of Mashpee, Bourne, and Sandwich, and abuts the town of Falmouth. Once an active U.S. Air Force base, the MMR covers nearly 21,000 acres - approximately 30 square miles.

U.S. Coast Guard Air Station Cape Cod (ASCC), with its three helicopters and four jets, is the only Coast Guard Aviation facility in the northeast. As such, ASCC is responsible for the waters from New Jersey to the Canadian border. ASCC maintains the ability to launch a helicopter and/or jet within 30 minutes of a call, 365 days-a-year, 24 hours-a-day, and in nearly any weather condition.

Air Station Cape Cod’s mission of “Always Ready! First to Fly!” protects life, property, and the marine environment in service to the public and our country. ASCC optimizes the use of personnel, resources, and technology in support of the Coast Guard’s five fundamental roles: Maritime Safety, Maritime Security, Maritime Mobility, National Defense, and Protection of Natural Resources.

Description of Services

DSI provides terminal air traffic control services at Coast Guard Air Station Cape Cod. The contract provides recruiting; training, supervising, and retention of all air traffic control, management, and administrative personnel. Controllers are certified by the National Weather Service as Limited Aviation Weather Reporting Station (LAWRS) observers to report and disseminate weather data for the safe conduct of aircraft operations.

In an average year, the air traffic controllers assist Air Station Cape Cod with:

- Conducting 249 search and rescue cases
- Saving 51 lives
- Providing medevac for 50 people
- Assisting 89 people in distress

USCG Cape Cod AS
Buzzards Bay, MA

DSI Services Provided:
- Air traffic control
- Aviation weather observation
- Flight following

Contract Info:
- HSCG84-09-N-AA1324
- FFP
- DSI is prime

Period of Performance:
- October 2009 to September 2015
Mojave Air & Space Port
Mojave, CA

Overview

Mojave Airport was first opened in 1935 as a small, rural airfield serving the local gold and silver mining industry. Today, Mojave Air and Space Port is a world-renowned flight research center spanning 3,300 acres, hosting the latest and most advanced aeronautical designs. The infrastructure has been upgraded to accommodate significant flight line development and industrial manufacturing utilizing common industry components which complement each other.

Mojave Air and Space Port is home to the National Test Pilot School where more test pilots are educated than at any other site in the world. It was also the launch and recovery site of Burt Rutan’s SpaceShipOne, which won 10 million dollars from the Ansari X Prize for developing a suborbital spacecraft. Virgin Airline’s Richard Branson, in conjunction with Burt Rutan, developed the world’s first commercial galactic spaceliner.

Mojave Air & Space Port – Mojave, CA

DSI Services Provided:
- Air traffic control
- Aviation weather observation
- Flight following

Contract Info:
- Mojave Airport
- FFP
- DSI is prime

Period of Performance:
- July 2012 to June 2017 (two contracts)

Description of Services

DSI provides terminal air traffic control services at Mojave Air and Space Port. The contract provides recruiting; training, supervising, and retention of all air traffic control, management, and administrative personnel.

Controllers are certified by the National Weather Service as Supplemental Aviation Weather Reporting Station (SAWRS) observers to report and disseminate weather data for the safe conduct of aircraft operations.

DSI Capabilities Statement
The construction of the Springfield Municipal Airport was ordered by the Secretaries of War, Navy, and Commerce, in cooperation with the City of Springfield, on June 15, 1943. Completed in August, 1946, as a defense project, the airport opened with three 5,500-foot by 150-foot runways. The City Commission appointed a “Citizens’ Airport Advisory Committee” to advise them on the airport’s management. The committee was chaired by local businessman, and former WWI aviator with the U.S. Army Air Service, Mr. Henry Addison Beckley.

Since 1946, Springfield-Beckley Municipal Airport has been a cornerstone of the aviation system across the state of Ohio. The 1,400-acre airport, located five miles south of the city of Springfield, is at the heart of air travel and cargo activity in southwestern Ohio and serves the residential and business communities of Clark, Greene, and Champaign counties.

This general aviation airport serves business, instructional, recreational, and commercial flying. The airport is also home to various divisions of the Ohio Air National Guard and is the closest general aviation facility to Wright-Patterson Air Force Base.

DSI provides terminal air traffic control and weather observation services at Springfield-Beckley Municipal Airport. The contract provides for continuous hours of service and includes recruitment, retention, supervision, and contract management of all personnel.

Air traffic controllers are responsible for operating a certified air traffic control tower within Class D Airspace by providing:

- Safe Control of Visual Flight Rule (VFR) Air/Ground Traffic by FAA standards as defined in FAA JO 7110.65, Air Traffic Control
 - Controllers are certified by FAA examiners and hold current FAA Control Tower Operator (CTO) certificate
- Weather Observation Services through Limited Aviation Weather Reporting Station (LAWRS) or Surface Aviation Weather Reporting Station (SAWRS) as certified by the National Weather Service (NWS)
- FAA Accident/Incident Reporting in accordance with FAA Order 8020.16 Aircraft Accident and Incident Notification, Investigation, and Reporting
- Safety Management System/Safety Risk Management processes that complies with FAA Safety Management System Orders (SMS)
- Complete and current flight information publication (FLIP) documents, charts, maps, publications and instruction files
- Individualized training and proficiency records for all operational controllers
- Annual ATC Training Program flexible to airport-specific conditions and requirements
- Program Management Quality Assurance reviews
The FAA operates 314 air traffic control facilities and the Air Traffic Control System Command Center in the United States. The FAA employs more than 14,000 air traffic controllers. They work in air traffic facilities of all sizes, safely guiding about 50,000 aircraft through the National Airspace System (NAS) each day. These controllers provide air navigation services to aircraft in the U.S. domestic airspace, and in the 24.6 million square miles of international oceanic airspace delegated to the United States by the International Civil Aviation Organization.

The FAA must have a well-trained air traffic controller workforce to allow it to successfully meet the current and future needs of the NAS and address safety, capacity, and efficiency objectives. To do this, the FAA is making today’s training more effective by gearing it towards the skills needed for success in the context of career-long development, and ensuring alignment to the mission of the FAA as a premier air traffic service provider.

To satisfy the goals and objectives of the FAA's strategy for the development of the air traffic controller workforce, the Air Traffic Control Optimum Training Solution (ATCOTS) contract was established. ATCOTS will achieve operational excellence by ensuring safety and aircraft separation, enhance financial discipline by creating a more cost-efficient air traffic controller training process, and ensure a viable future by training controllers to meet FAA’s changing needs.

DSI supports the FAA’s training initiatives by implementing the FAA’s ATCOTS program at the following Air Route Traffic Control Centers (ARTCCs):

- Boston ARTCC
- Cleveland ARTCC
- Indianapolis ARTCC
- Minneapolis ARTCC
- New York ARTCC
- Washington ARTCC

DSI delivers en route air traffic control training to FAA developmental trainees through classroom instruction, computer-based instruction programming and administration, test administration, records documentation, and high-fidelity simulations lab instruction.
 Welcoming nearly 36 million passengers each year, Detroit Metropolitan Wayne County Airport (DTW) is the 12th busiest airport in the U.S. and one of the busiest in the world. DTW is the largest hub and primary U.S. international gateway for Northwest Airlines, the world’s fifth busiest carrier, and the second-largest hub for ultra-low-cost carrier Spirit Airlines. Together with 15 additional passenger airlines—including six foreign flag carriers—Detroit’s airlines and their regional partners offer service to more than 160 non-stop destinations around the globe.

The airport’s new North Terminal makes DTW one of the newest, most operationally-capable and efficient airports in North America. Together with the McNamara Terminal, which opened in 2002, DTW features two new terminals, nearly 150 gates, six jet runways, and two modern Federal Inspection Services facilities for international arrivals.

The Detroit Airlines’ North Terminal Consortium (DANTeC) is a Michigan Limited Liability Company formed by several DTW based airlines. DANTeC was established for the purpose of constructing, installing, operating, and maintaining certain airline equipment and systems, and for providing other operations, maintenance and support services to the airlines at the North Terminal.

DSI provides ramp tower control staffing, management, gate assignment and coordination services to DANTeC. DSI develops and coordinates memorandums of agreement with the FAA, DTW Airside Operations, and the Wayne County Airport Authority airport integrating all aircraft movements to and from the new North Terminal. DSI performs common use gate assignments on a real-time basis and ramp control of commercial air carriers for non-movement areas in and around the North Terminal.

• DSI’s ramp controller is tasked with all ATC communications, aircraft push-back clearance, RON assignment, ramp activity coordination, and common use gate assignment during periods of maximum and minimal ramp activity.
• DSI’s gate coordinator duties consist of adjustments to MUFIDS, common use gate planning, and common use gate assignments.
• DSI also maintains active participation in the Gate Planning and Review Committee to manage the North Terminal’s common use gate program.
• DSI purchased all tower and gate management equipment, and managed the completed tower equipment installation.
Ramp Control Tower Services
Seattle-Tacoma International Airport
Seattle, Washington

Overview

Handling over 43 million passengers a year and conducting over 380,000 total aircraft operations, the Seattle-Tacoma International Airport (Sea-Tac) is home to the 13th busiest commercial service airport in the United States. A growing Port of Seattle has seen passenger levels increase 12.9% and air cargo increase 1.7% from 2014. Sea-Tac is the largest airport in the Pacific Northwest region.

Serving flights to cities throughout North America, Europe, the Middle East, and Asia, Sea-Tac is the main hub for Alaska Airlines. The airport’s 90+ gates is a hub and international gateway to Asia and Europe for Delta Air Lines and is serviced by 24 different airlines – including 14 foreign flag carriers. Sea-Tac is owned and operated by the Port of Seattle. The Port is responsible for Seattle’s seaport and airport, employing just under over 1,800 employees. The Port has three operating divisions (Aviation, Real Estate, and Seaport), as well as capital development and corporate division.

Description of Services

DSI provides ramp control tower staffing, management, and coordination services to the Port of Seattle. DSI develops and coordinates memorandums of agreement with the FAA, SEA Airside Operations, various Airlines, and the Port Authority integrating all aircraft movements between airport movement and non-movement areas.

- DSI’s ramp controllers are tasked with all ATC communications, aircraft push-back clearance, RON assignment, and ramp activity coordination during periods of maximum and minimal ramp activity.
- DSI establishes operational procedures to address issues such as hand-off points, priorities, communications, responsibilities, etc., for the safe movement of air carriers.
- DSI organizes meetings with the Airport, Airlines and FAA representatives, documentation of the procedures, periodic updates on the progress of development to the Airport.
- DSI analyzes and operates airport technologies such as Airport Surface Detection Equipment (ASDE-X), Integrated Communications Switching System (ICSS), Closed Circuit Television (CCTV), Information Dissemination and Display System (IDS5), Flight Information Management Systems (FIMS), and the Resource Management System (RMS) to efficiently manage airline movement on the airport.
- All DSI controllers maintain a strong working knowledge of Airport Safety Management Systems (SMS) and the Safety Risk Management Document (SRMD) processes.

SEA – Seattle, Tacoma, WA

DSI Services Provided:
- Ramp tower control
- Positive control of commercial air carriers on airport movement and non-movement areas
- Gate ingress and egress
- Professional aviation board composition

Contract Info:
- Agreement # C-00318804
- Fixed Price
- DSI is prime

Period of Performance:
- 01 January 2017 to 31 Dec 2022
Research, Science & Technology Division

Health and Safety Services

Services
Special Crash Investigation
Trauma-based Investigation and Analysis
Consumer Product Evaluation
Human Factors Engineering

Customers
Department of Transportation
• National Highway Traffic Safety Administration (NHTSA)
• Federal Motor Carrier Safety Administration (FMCSA)
• Volpe Center
Centers for Disease Control and Prevention
• National Institute of Occupational Safety and Health (NIOSH)
Westat
State Farm Insurance
Johns Hopkins University
University of Maryland
Department of Agriculture
Oklahoma State University

Information Technology Services

Services
Computer-Aided Design and Drafting
Data acquisition and reduction
Data encoding
Database design
Database implementation
Modeling and Simulation
National Accident Safety Survey (NASS)
Software scripting
Systems integration

Customers
Department of Transportation
• Federal Motor Carrier Safety Administration (FMCSA)
• Volpe Center
• National Highway Traffic Safety Administration (NHTSA)

Test and Evaluation

Services
Automotive testing
Full-scale aircraft crash testing
Test planning and reporting
Vehicle performance support

Customers
Canadian Government
Commercial Automobile Manufacturers
Federal Highway Administration
National Highway Traffic Safety Administration (NHTSA)
Crash Investigation & Analysis Services
NHTSA—Special Crash Investigations
Washington, DC (Multiple Locations)

Overview

The National Traffic Safety Administration (NHTSA) is under the U.S. Department of Transportation (DOT), and was established by the Highway Safety Act of 1970, as the successor to the National Highway Safety Bureau, to carry out safety programs under the National Traffic and Motor Vehicle Safety Act of 1966 and the Highway Safety Act of 1966.

NHTSA is responsible for reducing deaths, injuries and economic losses resulting from motor vehicle crashes. This is accomplished by setting and enforcing safety performance standards for motor vehicles and motor vehicle equipment, and through grants to state and local governments to enable them to conduct effective local highway safety programs. One function of NHTSA is to investigate safety defects in motor vehicles. NHTSA also conducts research on driver behavior and traffic safety, to develop the most efficient and effective means of bringing about safety improvements.

DSI Capabilities Statement

DSI has more than six decades of experience performing transportation safety research, ranging from analyzing the effects of human factors to vehicle performance and usability. DSI has supported the missions of Department of Transportation agencies for over 35 years. DSI has worked extensively with the NHTSA, supporting its mission to reduce the toll of death and injuries on our nation’s highways.

The Special Crash Investigation (SCI) program provided NHTSA with the most in-depth and detailed level of crash investigation data collected by the agency. Hundreds of data elements relevant to occupant protection, crash causation, reconstruction, and analysis; vehicle dynamics, occupant kinematics; injury severity and sourcing were collected by the SCI team during their on-site and remote investigations. The crash investigators obtained data and photographs from crash sites, photographed vehicles, measured the crash damage, and identified interior locations that were contacted by the occupants. The investigators interviewed crash victims and reviewed medical records to determine the nature and severity of injuries.

Each investigation provided extensive information about pertinent pre-crash, crash, and post-crash events involving the occupants, vehicles, rescue, and environmental factors which may have contributed to the event’s occurrence or severity. Included in each report was an analysis and determination of the occupant kinematics and vehicle dynamics as they occurred throughout the crash. Detailed performance evaluation safety features (particularly those related to any of the Federal Motor Vehicle Safety Standards) were provided. SCI cases are intended to be an anecdotal data set useful for examining special crash circumstances or outcomes from an engineering perspective. The benefit of this program lies in its ability to locate unique real-world crashes anywhere in the country, and perform in-depth clinical investigations in a timely manner which can be utilized by the automotive safety community.
Overview

To address the challenges of America’s highway system, Congress established the second Strategic Highway Research Program. Administered by the Transportation Research Board, part of the National Research Council, the SHRP 2 program includes a naturalistic driving study (NDS) which will collect data on “naturalistic,” or real-world, driving behavior over a two-year period.

The SHRP 2 NDS represents a large-scale effort to collect data to better understand how drivers interact with and adapt to an extensive array of factors (e.g., the vehicle, traffic environment, roadway characteristics, traffic control devices, and the natural environment), and assess the differences in collision risk associated with each of these factors and interactions. The resulting data is expected to provide a wealth of information regarding driving behavior, lane departures, and intersection activities, which is anticipated to be of interest to transportation safety researchers and others for at least 20 years.

DSI provides crash investigation research as a subcontract to Westat, Rockville, MD. The program will last two years and is expected to be completed in 2013. SHRP 2 focuses on applied research:

- **Safety** — Prevent or reduce the severity of highway crashes by understanding driver behavior
- **Renewal** — Address the aging infrastructure through rapid design and construction methods that cause minimal disruption and produce long-lived facilities
- **Reliability** — Reduce congestion through incident reduction, management, response, and mitigation
- **Capacity** — Integrate mobility, economic, environmental, and community needs in the planning and designing of new transportation capacity

Description of Services

DSI conducts automobile accident investigations in Raleigh Durham, NC, to support SHRP 2. DSI investigators perform the following:

- Gather information about driver activities prior to entering the vehicle, such as sleep patterns, fatigue levels, emotional states, and stress levels
- Document the roadway environment, possible vehicle problems, and include a detailed description of the crash etiology
- Gather or retrieve DAS data, Electronic Data Recorder data, Police Accident Reports, Study Participant Interviews, Aerial Views, and Vehicle Photos
- Utilize Easy Street Draw for crash site documentation and detailed description
- Obtain a series of photos depicting the approach to point of impact for vehicles, photos looking back from point of impact, and photos of physical evidence such as skid marks, gouges in the roadway, and impact points
The Federal Highway Administration’s (FHWA’s) Office of Research, Development, and Technology (RD&T) is located at the Turner-Fairbank Highway Research Center (TFHRC), a federally owned and operated national research facility in McLean, Virginia. The center houses more than 20 laboratories, data centers, and support facilities, where scientists and engineers conduct applied and exploratory advanced research in vehicle-highway interaction, nanotechnology, and a host of other transportation safety fields. The laboratories at the center provide a vital resource for advancing the body of knowledge for transportation safety.

The Motorcycle Crash Causation Study (MCCS) is the most comprehensive U.S. investigation into the causes of motorcycle crashes, rider demographics, and opportunities for countermeasure development in more than 30 years. When completed, a large and unique data set will be have been developed, derived from actual motorcycle crash information, risk-categorized rider groups, and focusing on the unique circumstances that produce motorcycle crashes. This will offer unmatched perspective into motorcycling-specific crash-causation factors, which information will be used to develop effective countermeasures, future safety standards, and reduce the risk of fatalities and injuries for motorcycle riders.

DSI performs transportation research for the MCCS by securing police cooperation and conducting on-scene investigations of injury-producing motorcycle crashes in Southern California. The research focuses on the factors that contribute to the causes and severity of motorcycle crashes. DSI helped develop and test data collection forms, research protocols, and databases during the FHWA pilot study in 2009, and in June, 2011, DSI began investigating crashes in California’s greater Orange County area. The investigative team is on call 24/7, ready evaluate crash scenes within hours of notification.

Cooperating police agencies notify DSI when a crash is reported, and trained investigators are immediately dispatched to the crash location to make detailed inspections, record measurements, and take photographs of the crash-involved vehicles and the crash scene. DSI’s team interviews motorcycle riders, passengers, and other vehicle drivers to ascertain the events contributing and leading up to the crash. They also analyze hospital records and collect specific data on the crash-related injuries. The crash investigation team collects data from motorcyclists who travel near the crash site one week following the crash; this “control group” survey allows the study to compare the vehicle and rider characteristics of crash-involved motorcyclists with those who are traveling in the same location but are not involved in a crash. The research team is expected to collect data on 280 crash cases and conduct 460 control group observations during the course of this contract.
Overview

The National Highway Traffic Safety Administration’s mission is to save lives, prevent injuries, and reduce traffic-related health care and other economic costs. The agency develops, promotes, and implements effective educational, engineering, and enforcement programs with the goal of ending preventable tragedies and reducing economic costs associated with vehicle use and highway travel.

NHTSA’s National Automotive Sampling System (NASS) collects crash data on a nationally representative sample of police-reported motor vehicle traffic crashes and related injuries. NASS data are used by government, industry, and academia in the US and around the world to make informed highway safety decisions. The NASS’s General Estimates System (GES) captures information on all types of traffic crashes, and the Crashworthiness Data System (CDS) is focused on more severe crashes involving passenger vehicles (passenger cars, light trucks such as pickups and utility vehicles, and vans) to better understand the consequences to vehicles and occupants in crashes (i.e., crashworthiness).

Designed in the 1970s, NASS has never been fully funded to collect data from the originally planned 75 data collection sites. Moreover, the data needs of the transportation community have increased and significantly changed over the last three decades. In recent years, the transportation community has been increasingly more interested in adding data elements related to what happens before a crash and related crash avoidance safety countermeasures. With the substantial reductions in passenger vehicle fatalities, more data are needed for the vehicles and persons not included in the current CDS protocols, such as large trucks, motorcycles, and pedestrians. Recognizing both the importance and limitations of the current NASS system, NHTSA is undertaking a modernization effort to upgrade its data systems by improving the information technology infrastructure, updating the data collection protocols, and reexamining the NASS sample sites and size.

Description of Services

DSI is assisting in the effort to modernize the National Automobile Sampling System to effectively collect transportation crash data to meet current and future safety needs. This includes modernizing the data elements, as well as the sample design. Our vehicle research and investigations of fatal passenger/rail crashes make us uniquely qualified to modernize data elements so that they are responsive to the current and future needs of both internal and external data users. DSI will move NHTSA toward a complete survey design modernization and to develop a detailed, executable sample design and data collection protocol blueprint that meets data needs in an effective and efficient manner while still maintaining national representativeness.
List of Acronyms

Common Acronyms used by DSI

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB</td>
<td>Air Force Base</td>
</tr>
<tr>
<td>AIS</td>
<td>Automated Information Systems</td>
</tr>
<tr>
<td>ALOSH</td>
<td>Appalachian Laboratory for Occupational Safety & Health</td>
</tr>
<tr>
<td>APG</td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td>APL</td>
<td>Applied Physics Laboratory</td>
</tr>
<tr>
<td>ARL</td>
<td>Army Research Laboratory</td>
</tr>
<tr>
<td>ARTCC</td>
<td>Air Route Traffic Control Centers</td>
</tr>
<tr>
<td>ASC</td>
<td>Army Sustainment Command</td>
</tr>
<tr>
<td>ASCC</td>
<td>Air Station Cape Cod</td>
</tr>
<tr>
<td>ATC</td>
<td>Aberdeen Test Center</td>
</tr>
<tr>
<td>ATCALS</td>
<td>Air Traffic Control and Landing System</td>
</tr>
<tr>
<td>ATCOTS</td>
<td>Air Traffic Control Optimum Training Solution</td>
</tr>
<tr>
<td>ATIS</td>
<td>Automatic Terminal Information Services</td>
</tr>
<tr>
<td>C4I</td>
<td>Command, Control, Communication, Computer and Intelligence</td>
</tr>
<tr>
<td>CDS</td>
<td>Crashworthiness Data System</td>
</tr>
<tr>
<td>CNO</td>
<td>Chief of Naval Operations</td>
</tr>
<tr>
<td>CONUS</td>
<td>Contiguous U.S.</td>
</tr>
<tr>
<td>CRTC</td>
<td>Combat Readiness Training Center</td>
</tr>
<tr>
<td>CTO</td>
<td>Control Tower Operator</td>
</tr>
<tr>
<td>DANTeC</td>
<td>Detroit Airlines' North Terminal Consortium</td>
</tr>
<tr>
<td>DBA</td>
<td>Database Administrator</td>
</tr>
<tr>
<td>DISA</td>
<td>Defense Information Systems Agency</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DoD EA</td>
<td>Department of Defense Enterprise Architecture</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DSI</td>
<td>Dynamic Science, Inc.</td>
</tr>
<tr>
<td>DTW</td>
<td>Detroit Metropolitan Wayne County Airport</td>
</tr>
<tr>
<td>EAGLE</td>
<td>Enhanced Army Global Logistics Enterprise</td>
</tr>
<tr>
<td>EDSI</td>
<td>Engineering/Documentation Systems, Inc.</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FDIO</td>
<td>Flight Data Input/Output</td>
</tr>
<tr>
<td>FEA</td>
<td>Federal Enterprise Architecture</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FMCSA</td>
<td>Federal Motor Carrier Safety Administration</td>
</tr>
<tr>
<td>GES</td>
<td>General Estimates System</td>
</tr>
<tr>
<td>GSA</td>
<td>General Services Administration</td>
</tr>
<tr>
<td>GWAC</td>
<td>Government-Wide Acquisition Contract</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>IT/NSS</td>
<td>Information Technology National Security Systems</td>
</tr>
<tr>
<td>JITC</td>
<td>Joint Interoperability Test Command</td>
</tr>
<tr>
<td>LAWRS</td>
<td>Limited Aviation Weather Reporting Station</td>
</tr>
</tbody>
</table>
List of Acronyms (cont.)

Common Acronyms used by DSI

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCCS</td>
<td>Motorcycle Crash Causation Study</td>
</tr>
<tr>
<td>METNAV</td>
<td>Meteorological/Navigation</td>
</tr>
<tr>
<td>MMR</td>
<td>Massachusetts Military Reservation</td>
</tr>
<tr>
<td>MRTFB</td>
<td>Major Range and Test Facility Base</td>
</tr>
<tr>
<td>MSS</td>
<td>Mission Support Service</td>
</tr>
<tr>
<td>MUFIDS</td>
<td>Multi-User Flight Information Display System</td>
</tr>
<tr>
<td>NASS</td>
<td>National Accident Safety Survey</td>
</tr>
<tr>
<td>NASS</td>
<td>National Airspace System</td>
</tr>
<tr>
<td>NASS</td>
<td>NHTSA's National Automotive Sampling System</td>
</tr>
<tr>
<td>NAVAID</td>
<td>Navigational Aid</td>
</tr>
<tr>
<td>NAVSEA</td>
<td>Naval Sea Systems Command</td>
</tr>
<tr>
<td>NDS</td>
<td>Naturalistic Driving Study</td>
</tr>
<tr>
<td>NGB</td>
<td>National Guard Bureau</td>
</tr>
<tr>
<td>NHTSA</td>
<td>National Highway Traffic Safety Administration</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety & Health</td>
</tr>
<tr>
<td>NSWC</td>
<td>Naval Surface Warfare Center</td>
</tr>
<tr>
<td>NUWC</td>
<td>Naval Undersea Warfare Center</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>OCONUS</td>
<td>“Outside” the CONUS area</td>
</tr>
<tr>
<td>OSD</td>
<td>Office of the Secretary of Defense</td>
</tr>
<tr>
<td>PMEL</td>
<td>Precision Measurement Equipment Laboratory</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RD&T</td>
<td>Research, Development, and Technology</td>
</tr>
<tr>
<td>RDT&E</td>
<td>Research, Development, Test and Evaluation</td>
</tr>
<tr>
<td>RITA</td>
<td>Research and Innovative Technology Administration</td>
</tr>
<tr>
<td>SAWRS</td>
<td>Supplemental Aviation Weather Reporting System</td>
</tr>
<tr>
<td>SB</td>
<td>Small Business</td>
</tr>
<tr>
<td>SeaPort-e</td>
<td>SeaPort Enhanced</td>
</tr>
<tr>
<td>SHRP</td>
<td>Strategic Highway Research Program</td>
</tr>
<tr>
<td>SMS</td>
<td>Safety Management System</td>
</tr>
<tr>
<td>SPACECOM</td>
<td>Space Command</td>
</tr>
<tr>
<td>T&E</td>
<td>Test and Evaluation</td>
</tr>
<tr>
<td>TEMC</td>
<td>T&E Management Center</td>
</tr>
<tr>
<td>TFHRC</td>
<td>Turner-Fairbank Highway Research Center</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rule</td>
</tr>
<tr>
<td>VS</td>
<td>Virtual SYSCOM</td>
</tr>
<tr>
<td>WDx</td>
<td>Warfare Centers</td>
</tr>
</tbody>
</table>

Additional Acronyms

- PMEL: Precision Measurement Equipment Laboratory
- R&D: Research and Development
- RD&T: Research, Development, and Technology
- RDT&E: Research, Development, Test and Evaluation
- RITA: Research and Innovative Technology Administration
- SAWRS: Supplemental Aviation Weather Reporting System
- SB: Small Business
- SeaPort-e: SeaPort Enhanced
- SHRP: Strategic Highway Research Program
- SMS: Safety Management System
- SPACECOM: Space Command
- T&E: Test and Evaluation
- TEMC: T&E Management Center
- TFHRC: Turner-Fairbank Highway Research Center
- VFR: Visual Flight Rule
- VS: Virtual SYSCOM
- WDx: Warfare Centers